
University of Michigan UM::Autonomy – Flying Sloth 1

UM::Autonomy’s Flying Sloth
Nathan Brown, Edward Fenwick, Thomas Huang, Benjamin Johnson, Elliot Mueller, Christopher Shu, Anthony Uytingco

Abstract – Flying sloth is a fully autonomous surface vehicle with

a custom trimaran hull designed for maximum maneuverability

and stability while maximizing deck area. This boat was designed

to compete in the tenth annual AUVSI Foundation RoboBoat

competition. As a part of this competition, Flying Sloth will

navigate an obstacle course, identify acoustic beacons, locate a

docking bay around a moving carousel, and launch an

autonomous drone. Our main focuses this year were the

application of new sensors and documentation of our entire code

base. This paper details the efforts we made to meet these goals

and each individual challenge for the 2017 competition.

Fig. 1. UM::Autonomy’s 2017 boat, Flying Sloth.

I. INTRODUCTION

Flying Sloth is UM::Autonomy’s 2017 entry for the

AUVSI Roboboat competition. Like our previous entries,

Flying Sloth is designed to improve on lessons learned from

previous designs as well as complete all challenges set forth

by the competition. As it would be impractical to describe the

design in full, this paper focuses on the improvements made

over previous designs.

A few of the notable design changes include the transition

to a trimaran design instead of a monohull or catamaran as

used in previous years and the re-writing of our simultaneous

localization and mapping implementation (SLAM). The

details of these changes will be enumerated in the following

sections.

II. HULL AND DECK

We have radically changed the design of the hull and deck

for this year’s competition. This section will discuss our

design decisions, construction process, hull attachments, and

sensor mounts for the hull and deck.

A. Hull Design

Our main goals this year were to have more room on our

deck for the drone challenge and address some of the issues

identified from our previous monohull design. Specifically,

this included increasing stability, reducing weight, and

repositioning thruster placement. As such, our design process

focused on deck area and stability. Before deciding on the

trimaran design, an alternate consideration was a SWATH

design suggested by our advisor. However, due to time

constraints and lack of experience, the team decided to

proceed with the trimaran design.

The idea behind a trimaran was that it would be a good

diversion from the typical catamaran design that had been

attempted in previous years and it seemed to be an

improvement on the monohull design used in last year’s

competition.

A few requirements for the design were to maximize deck

space for the drone, maximize interior space for a large

electrical box (which will be discussed more thoroughly in

Section III, A), keep water displacement low to allow for a

lower center of gravity and reduce freeboard, increase beam

for greater stability while still enabling passage through

doorways, and allowing fixed thruster placements between the

hulls for ease of deployment and better entanglement

prevention.

In order to achieve all the desired characteristics, a few

compromises had to be made. For example, to fit a large

electrical box within the boat the center hull had to have a

wide base which increased water displacement. This meant

more weight is required to reduce freeboard and keep the

center of gravity low enough to guarantee high stability. The

large center hull also reduced the space allowed for the

thrusters between the main hull and the side hulls, such that

the boat cannot be laid on a flat surface without proper

supports. However, the fixed thrusters have a reduced

possibility of entanglement with ropes and weeds and

eliminate the hassle of attaching and detaching outriggers, as

was the case with the previous monohull design.

B. Hull and Deck Construction

Initially, the hull design was ideated through hand drawn

sketches and multiple iterations based on engine driven

trimarans. The design was then digitally drawn using the

computer-aided drafting (CAD) software, SOLIDWORKS.

Various modifications were made to the hull dimensions to

guarantee a large enough interior while maintaining limited

outer dimensions. Once the design was finalized, three closed-

cell insulation foam cores, one for each hull, were cut on a

CNC routing machine. To accommodate the working height of

the router, the model was cut into multiple slices, using 2” and

3” thick cross sections parallel to the waterline and eventually

glued together to create the representative foam core (see Fig.

2).

Fig. 2. The CAD model of the hull used to generate the foam core.

University of Michigan UM::Autonomy – Flying Sloth 2

Next, with the foam cores upside down, stitched triaxial

fiberglass, available from previous years, was used along with

epoxy resin and hardener to permanently cover the hulls

independently. The sides hulls’ foam cores were completely

enclosed in fiberglass to ensure waterproofness. Once two

layers were applied, the side hulls were individually attached

to the main hull by applying fiberglass over two connecting

joints (see Fig. 3).

Fig. 3. Fiberglass hull connections

To reduce overall weight and keep the center of gravity as

low as possible, 0.5 inch honeycomb aluminum was used for

the deck. This material provided a rigid and thick enough

surface to securely screw components. The deck profile was

determined by cutting a paper template to shape while placing

it over the hulls. Using this template, the honeycomb

aluminum was cut using a reciprocating jigsaw. In order to

secure the deck to the hulls, two screws were fiberglassed

upside down to each side hull and holes were drilled on the

deck to prevent it from sliding off. In addition, to prevent the

deck from lifting off of the hulls wing nuts and washers were

used to clamp the deck on the electrical box edge, which was

further waterproofed using foam seal typically used in

weatherproofing window gaps. Finally, to aid in

transportability and to provide attachment points for the crane

at competition, four stainless steel handles were attached via

fiberglass symmetrically around the main hull of the boat to

prevent strain on the side hull and main hull connections (see

Fig. 4).

Fig. 4. Deck, deck attachments, and rear handles.

C. Sensor Mounts

This sub-section will present the types of sensors and the

mounts used in this iteration of UM::Autonomy’s autonomous

boat.

We used the same general design for the waterproof

camera mount as we did the previous year. The camera bottle

consists of three main parts: the top case, the bottom case, and

two lenses. The top case provides half of the camera mount,

two frames for the lenses’ integration, and a slit for the O-ring.

Moreover, the bottom case provides the second half of the

camera mount, integration to the boat, and ridges to

accommodate the O-ring and top case. Both cases were 3D

printed in the University of Michigan’s 3D lab. Respectively,

the front and back Acrylic lenses, fabricated by a laser cutter,

allow the camera to see clearly through the case and allow us

to know if the camera is on via the light on the back of the

camera. The front of each lens is covered in a polarized film to

reduce glare to the cameras. The bottom case is attached to the

boat through the sensor tower and the top case slides directly

into the bottom case (see Fig. 5). By bolting the cases

together, the O-ring seal will be complete and the camera will

be successfully waterproof. The camera is elevated as far

above the surface of the water as the competition height limits

allow to obtain the widest field of view.

Fig. 5. A CAD model of the camera bottle used this year.

Fig. 6. Hydrophone placements.

University of Michigan UM::Autonomy – Flying Sloth 3

We can use up-to four Aquarian Audio Products H2a high

impedance hydrophone to detect the locations of the acoustic

beacon. These hydrophones were mounted using PVC pipes

through which the cables would be fed. Holes were drilled on

the deck at four positions and bulkhead fittings were used to

mount the pipes. Three were aligned along the port side of the

boat between the main and side hull and one was aligned with

the rear hydrophone, on the starboard side (see Fig. 6).

III. Electrical System

The following section will describe the changes we have

made to the electrical system of Flying Sloth compared to

previous boats. The primary changes we made include the

implementation of several new sensors and controls necessary

to pilot an autonomous drone taking off from the boat’s deck.

A. Electrical System

Many of the components making up Flying Sloth’s

electrical system are the same or equivalent to previous boat

electrical systems. Similar to the previous year, we created a

custom box (28” x 15.5” x 7”) out of sheet aluminum to house

our electrical system and recessed it within the hull of the

boat. The top of the electrical box is flush with the deck and is

watertight from a seal around its top edge with the underside

of the deck. This has allowed for greater deck space for drone

landing and takeoff while also lowering our center of gravity.

B. Motherboard and Sensors

This year, Flying Sloth’s electrical system was housed

within a aluminum box designed to be recessed within the hull

of the boat. It was slightly larger than previous years so as to

allow greater maneuverability and access to components.

Within this box is housed the computer along with several

sensors and controllers necessary for the boat.

The electrical box is a closed system for which

connections with sensors and other hardware is made through

waterproof connectors imbedded within the deck. The two

exceptions to this are the deck lid which opens allowing

access to within the box and two water tubes through the back

of the hull to a radiator used for water-cooling the

motherboard’s CPU.

Computationally, Flying Sloth has a water-cooled Intel

Core i7 processor mounted on an ASUS Z97 Extereme6

motherboard with 8 GBs of high-speed RAM. This powerful

set-up allows for multiple processor intensive programs such

as image processing to run at a high rate at the same time

without any problems.

Flying Sloth is equipped with a collection of sophisticated

sensors that allow her to function autonomously. Specifically,

she uses: a Hokuyo UTM-30LX Lidar, a Point Grey Firefly

1.3PM USB camera, a Garmin 19x HVS GPS, a KVH DSP-

3000 fiber optic gyroscope (FOG), Aquarian Audio Products

H2a high impedance hydrophones, a PNI Prime 3-Axis digital

compass module, and a Sparton AHRS-8 inertial measurement

unit (IMU).

Flying Sloth uses a GPS, FOG, and compass in

conjunction to identify her relative position and orientation in

space. Additionally, she uses a single camera and LIDAR

concurrently to allow her to visually and spatially perceive her

surroundings. By using each of these sensors, Flying Sloth is

able to understand and react to her surrounding environment

effectively and efficiently.

She uses the information from the GPS to determine her

location and speed with data from the compass to accurately

orient the data with regards to magnetic north. In addition, the

FOG allows her to detect instantaneous change in her

orientation on the horizontal plane. Each of these sensors

communicate with Flying Sloth’s computer via a RS-232

serial communication protocol.

The AHRS-8 IMU provides additional velocity and

acceleration data for error calculation with regards to previous

sensors. It communicates via USB to Flying Sloth’s computer.

The LIDAR is rotated over a 0.2 radian arc by a

Dynamixel AX-12 servo to obtain a 3D point cloud from the

planar LIDAR sensor. It and the fixed camera provide the

necessary visual data for buoy detection and mapping over

USB communication.

One or two hydrophones are used to identify the location

of an underwater pinger. They communicate with the system’s

computer over 3.5 mm audio cables through corresponding

sound cards.

Fig. 7. A preliminary model of our custom PCB

C. Custom PCB

We continued to use this year a custom pcb that had been

designed in previous years. This pcb acts as our main voltage

bus, controls the boats two estop capabilities, and offers some

protection circuitry for our battery. The greatest changes were

the addition of larger lines to accomadate greater currents and

the addition of several capacitors to attenuate sudden changes

to the input voltage.

The battery protection circuitry used is designed to

prevent the boat from draining its 22.2 V lithium polymer 6S

battery too low. This consists of a tri-state buffer and a voltage

divider to provide the current battery voltage as the input to an

Arduino. Once the Arduino detects that the battery has

University of Michigan UM::Autonomy – Flying Sloth 4

dropped below a safe operating voltage threshold, it triggers

the e-stop, causing the thrusters to lose power. Since the

thrusters provide our largest power draw, by turning them off

once a threshold voltage is reached, we are able to prevent the

battery from draining below the 3 V per cell minimum

voltage.

D. Networking

Much like previous years, we are using a pair of Ubiquiti

Rocket M5’s to establish communication between the boat and

our base station on shore. The on-shore-Rocket is attached to a

laptop via Ethernet. On the bat, we use a power-over Ethernet

adapter to power and communicate with the Rocket directly.

The Rockets operate in the 5470MHz – 5825 MHz frequency

range and there is an antenna connected to boat rockets to

allow this communication.

IV. Software Support Structure

The following section will describe and elaborate on the

structure used to support Flying Sloth’s autonomous

operation.

A. Operating System

Our boat runs the LTS version of Ubuntu 14.04 off of a

Samsung SSD 850 EVO. We choose this operating system for

compatibility reasons with existing code and external libraries.

B. Lightweight Communication and Marshalling

We use Lightweight Communication and Marshalling,

heareafter referred to as LCM, to perform inter-process

communication on the boat. LCM is a low latency, language

independent, message transfer protocol designed by Olsen,

Huang, and Moore [1]. LCM allows us to define simple

messages that can be published to an open channel. An

example of an LCM message can be seen in figure 8.

Fig. 8. An example LCM message for the FOG sensor

Each LCM message is buffered before being published to

a shared memory address. Any other process on the boat can

subscribe to the channel and extract information through the

LCM interface in a format specific to the current language.

V. General Code Structure

Our code structure is broken into three layers: driver,

detection, and decision. Each layer communicates through

LCM and all of the layers and the general form of the code

can be seen in figure 9.

A. Driver

The driver level is the lowest layer of boat code and the

layer that communicates directly with the boat hardware. Each

process communicates with a single sensor directly through a

serial interface and publishes the data after some light

formatting to LCM. We attempt to minimize preprocessing as

much as reasonably possible in this layer both in order to

allow for faster polling rate and in order to allow for

modifications to the processing algorithms without affecting

this layer.

Fig. 9. The general structure of Flying Sloth’s code base. Each square

is a separate process that communicates via LCM. Each arrow

represents an LCM channel or groups of channels.

B. Detection

The detection layer runs in tandem to and is dependent

upon the driver level. The detection layer identifies objects,

updates positional estimates, and runs our SLAM system. A

map of the currently observed course and current state of the

boat is published over LCM along with an estimate of the

pinger’s position.

C. Decision

The decision layer is the final layer on the boat and

controls the direction and position of the boat in the real

world. The decision layer runs a route planner which

implements a list of tasks that the boat must perform. The

tasks are abstracted and can be as simple as navigating to a

GPS position and as complex as navigating an entire obstacle

course. The decision layer publishes waypoints that the boat

should travel to. The actual movement of the boat such as PID

and motor control is accomplished in the control system

module.

VI. Software Utilities

In this section, we will describe and discuss the utilities

we use in testing and managing Flying Sloth’s computer.

A. Simulation

Due to the winters in Michigan, it is impossible to test the

boat for a large portion of the year. A large benefit of using

LCM is the ability to collect and playback logs. Our logging

program can be seen in figure 10.

University of Michigan UM::Autonomy – Flying Sloth 5

The use of the logging program allows us to perfectly

simulate the driver level of our boat and test the entire

detection layer accurately. The simulation program does have

some drawbacks however. It is unable to react to the outcomes

of the decision layer and requires the boat to have physically

been run on any course that needs to be simulated.

Fig. 10. Our logplayer can simulate all or a subset of LCM channels

that run on the boat. The LCM messages are posted in the relative

order and relative timing that they were received when the log was

actually taken.

B. Bot-Procman

Due to the design, our process manager can be used both

for test/debug sessions and competition runs. The process

manager is invoked with a configuration file as an argument.

The configuration file names all the process that can be run.

Because the configuration is not hard-coded, we can use a

different configuration when testing as opposed to a trial run,

affording us great flexibility during both runtime and testing

sessions. In addition, the process manager sports an interactive

graphical user interface for managing the processes. This

allows the developer to start and stop a process or view the

process’s output without searching for the terminal it was

started from. This aids us in debugging any problems Flying

Sloth may encounter because we can see the sensor data as

well as any LCM messages being sent.

The process manager also attempts to ensure that

processes are running and working as intended. For this, the

process manager will restart a process if it crashes for any

reason. Also, the process manager listens to the LCM channels

of the managed processes. Using the frequency of publishes,

the process manager can determine if a process has become

stuck even if it has not terminated. These features aim to

improve robustness by preventing a total system failure due to

a minor bug.

VII. Hydrophone Implementation

Flying Sloth has been modified to support the use of four

hydrophones. In our implementation however, she will only

make use of one or two when being used in conjunction with

the docking challenge. This section will discuss Flying Sloth’s

method for determining the pinger’s location.

If only one hydrophone is connected, Flying Sloth will

approach each gate and record a ping. Then, she will dock at

whichever gate has the most prominent ping in the frequency

range of 25 KHz to 40 KHz as determined by using a high

pass filter and Fast Fourier Transform (FFT).

If two hydrophones are connected, then Flying Sloth will

record a ping while in-between two gates. Using this

recording, a cross-correlation is performed to determine the

time difference of arrival (TDOA) between the two

hydrophones [2]. Based on the positioning of the

hydrophones, the TDOA will tell us if the ping lies to port or

starboard. Using this determination, Flying Sloth will either

dock at the single dock to a side or perform a second recording

between the remaining two gates.

VIII. SLAM Implementation

Flying Sloth has a redesigned simultaneous localization

and mapping (SLAM) system which is vital in many of the

challenges this year. While the boat had an Extended Kalman

Filter based SLAM that was built and utilized in previous

years, this system was poorly maintained and eventually broke

down entirely. To avoid repeating this problem, a new SLAM

system was designed with a focus on ease of understanding

and maintainability.

The ultimate goal was for the new SLAM system to be

extensible and easy to pass onto new team members so that it

would be usable even after the original programmers

graduated or left the team. To achieve this goal, the new

design was based on a fairly simple occupancy based grid

map. While this design is less state of the art, it is much easier

to explain to new team members that lack the theoretical

background for a more complex system.

A. Localization

The first aspect of Flying Sloth’s SLAM is Monte Carlo

localization. In each iteration of the system, both Generational

and Non-Generational particles are created. Generational

particles are created by taking particles from the previous

iteration and predicting their location forward using velocity

data from the boat’s IMU and GPS. Non-Generational

particles are simply generated in a Gaussian distribution

around the boat’s most recent pose estimate.

Each particle is then assigned an angle using a Gaussian

distribution around the FOG angle. Each of the generated

particles represents one possible pose of the boat, which is

made up of an X position, a Y position, and a current angle

relative to north.

Once the particles have been generated, they are put

through a weighting process. By comparing to the boat’s

current angle and position (given by the GPS and the FOG),

the system assigns a probability that a given particle is the true

pose of the boat to all generated particles. A similar weighting

process is run using the boat’s LIDAR. By comparing the

most recent map to the current point cloud created by the

LIDAR, the boat weighs each particle. A high weight in this

case means that the current point cloud agrees closely with the

map that has been generated in previous iterations of the

system. Finally, these weights are combined and the particle

University of Michigan UM::Autonomy – Flying Sloth 6

with the greatest weight is selected as the current pose of the

boat.

B. Mapping

The second aspect of SLAM is mapping. The map is

represented as a grid of values from 0 to 255, with 0 being

definitely empty and 255 being definitely full. After the boat

uses localization to find its pose, it rotates the current point

cloud from local coordinates (relative to the boat) into the

coordinates of the SLAM map.

Flying Sloth’s LIDAR pans up and down to get a 3D

view, but the SLAM map is 2D. To simplify this view down to

a 2D map, the system records a hit at a certain position if there

was a hit there at any point in the LIDAR pan. This ensures

that no position that contains an object at any height will be

seen as empty. For every LIDAR hit, the value of the hit

position gets incremented. Additionally, the value of all points

between the hit and the boat get decremented since there could

not be an object there if the LIDAR passed through its

location. If no hit was recorded at a certain angle from the

boat’s front, then all squares from the boat to the minimum

distance at this angle are decremented.

Over many iterations this system will converge on a map

that the boat can utilize with reasonable certainty. It is

important to note that any area not covered by the LIDAR

minimum range is not modified in any way, ensuring that the

map is not changed unless the boat has new information about

the area in question.

C. Evaluation

The new SLAM system was reasonably successful in its

goals of ease of understanding and ability to maintain. The

original developer of our new SLAM system graduated in the

Fall semester, requiring the team to transition the project to a

new manager immediately. In the following semester, the new

manger has successfully taken over the code base, added

compass and IMU support, and improved the documentation

for future management. The code that depended on the prior

SLAM was fairly easy to adapt to the new system; All vital

functions are now working with the new system.

IX. Challenges

Our approaches to address the dramatic changes to each

challenge as well as the new challenges will be described in

the following section.

A. Autonomous Navigation

Flying Sloth will go forward from the starting position

until two gates are detected. Then, Flying Sloth will head

along a straight-line path perpendicular to the two gates until

two more gates are detected and exit through them.

B. Speed Challenge

Flying Sloth will first identify the starting gates. Then, Flying

Sloth will head along a straight-line path perpendicular to the

two gates until the blue mark buoy is detected. Flying Sloth

will circle that buoy counterclockwise and head back to the

starting gates. Using SLAM, Flying Sloth will know

approximately where these gates are. These gates will be

verified using LIDAR and camera data and then exited

through.

C. Automated Docking

The first bay will be located using the hydrophone

method described above and Flying Sloth will dock at that

bay. Each bay will be identified using camera and a buoy

detection algorithm. After docking, Flying Sloth will back up

and return to the staring position. Since we do not have a

UAV that meets the required safety guidelines, we are unable

to completely verify the location of the second bay. Thus, we

will randomly select one of the bays.

D. Find the Path

Flying Sloth will first circle the course once or twice to

build a comprehensive SLAM map. Then, openings wide

enough for the boat will be labeled and visited one by one

until the middle of the obstacles can be reached. If an opening

turns out to be a dead end, Flying Sloth will back up and

continue to the next opening. While going through the

opening, buoys will be avoided using an obstacle avoidance

algorithm that steers Flying Sloth away from buoys directly in

front. Once inside, Flying Sloth will detect the can buoy in the

middle, circle it, and then exit through the same opening.

E. Follow the Leader

Flying Sloth will first wait for the flag with the correct number

to appear. The correct number will be identified using camera

data passed through a number detection algorithm. Then,

Flying Sloth will enter the carousel. She will move in a

circular path and avoid the flags using LIDAR. If the flag in

front gets too far away, she will go faster. If the flag in front

gest too close, she will go slower. Using SLAM, Flying Sloth

will know when a full rotation has been completed and will

exit the carousel.

F. Return to the Dock

To return to the dock, Flying Sloth will head towards the

GPS coordinates of the dock while using her obstacle

avoidance algorithm to avoid any objects in the way.

X. Conclusion

Flying Sloth underwent several major changes this year to

better meet and adapt to old and new challenges. A new hull

design was used for greater stability and maneuverability and

we adapted and rewrote our SLAM code for clearer and easier

implementation. Each of these changes and others together

help make Flying Sloth an effective and versatile vehicle for

navigating and completing each challenge.

University of Michigan UM::Autonomy – Flying Sloth 7

XI. References

[1] Huang, A. S., Olson, E., and Moore, D. C., 2010, “LCM:

Lightweight Communications and Marshalling,” IEEE/RSJ

International Conference on Intelligent Robots and

Systems, Taipei, pp. 4057-4062.

[2] Awaludin, I., Prihatmanto, A. S., Hidayat, E. M. I., and

Machbub, C., 2015, “Hyperbola tracing algorithm based on

particle filter approach within a half-quadrant space for

signal source localization,” IEEE International Conference

on System Engineering and Technology, Shah Alam, pp.

17-22.

