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Abstract – Flying sloth is a fully autonomous surface vehicle with 

a custom trimaran hull designed for maximum maneuverability 

and stability while maximizing deck area. This boat was designed 

to compete in the tenth annual AUVSI Foundation RoboBoat 

competition. As a part of this competition, Flying Sloth will 

navigate an obstacle course, identify acoustic beacons, locate a 

docking bay around a moving carousel, and launch an 

autonomous drone. Our main focuses this year were the 

application of new sensors and documentation of our entire code 

base. This paper details the efforts we made to meet these goals 

and each individual challenge for the 2017 competition. 

 

 
Fig. 1. UM::Autonomy’s 2017 boat, Flying Sloth. 

 

I. INTRODUCTION 

Flying Sloth is UM::Autonomy’s 2017 entry for the 

AUVSI Roboboat competition. Like our previous entries, 

Flying Sloth is designed to improve on lessons learned from 

previous designs as well as complete all challenges set forth 

by the competition. As it would be impractical to describe the 

design in full, this paper focuses on the improvements made 

over previous designs. 

A few of the notable design changes include the transition 

to a trimaran design instead of a monohull or catamaran as 

used in previous years and the re-writing of our simultaneous 

localization and mapping implementation (SLAM). The 

details of these changes will be enumerated in the following 

sections. 

 

II. HULL AND DECK 

We have radically changed the design of the hull and deck 

for this year’s competition. This section will discuss our 

design decisions, construction process, hull attachments, and 

sensor mounts for the hull and deck. 

 

A. Hull Design 

Our main goals this year were to have more room on our 

deck for the drone challenge and address some of the issues 

identified from our previous monohull design. Specifically, 

this included increasing stability, reducing weight, and 

repositioning thruster placement. As such, our design process 

focused on deck area and stability. Before deciding on the 

trimaran design, an alternate consideration was a SWATH 

design suggested by our advisor. However, due to time 

constraints and lack of experience, the team decided to 

proceed with the trimaran design. 

The idea behind a trimaran was that it would be a good 

diversion from the typical catamaran design that had been 

attempted in previous years and it seemed to be an 

improvement on the monohull design used in last year’s 

competition. 

A few requirements for the design were to maximize deck 

space for the drone, maximize interior space for a large 

electrical box (which will be discussed more thoroughly in 

Section III, A), keep water displacement low to allow for a 

lower center of gravity and reduce freeboard, increase beam 

for greater stability while still enabling passage through 

doorways, and allowing fixed thruster placements between the 

hulls for ease of deployment and better entanglement 

prevention. 

In order to achieve all the desired characteristics, a few 

compromises had to be made. For example, to fit a large 

electrical box within the boat the center hull had to have a 

wide base which increased water displacement. This meant 

more weight is required to reduce freeboard and keep the 

center of gravity low enough to guarantee high stability. The 

large center hull also reduced the space allowed for the 

thrusters between the main hull and the side hulls, such that 

the boat cannot be laid on a flat surface without proper 

supports. However, the fixed thrusters have a reduced 

possibility of entanglement with ropes and weeds and 

eliminate the hassle of attaching and detaching outriggers, as 

was the case with the previous monohull design. 

 

B. Hull and Deck Construction 

Initially, the hull design was ideated through hand drawn 

sketches and multiple iterations based on engine driven 

trimarans. The design was then digitally drawn using the 

computer-aided drafting (CAD) software, SOLIDWORKS. 

Various modifications were made to the hull dimensions to 

guarantee a large enough interior while maintaining limited 

outer dimensions. Once the design was finalized, three closed-

cell insulation foam cores, one for each hull, were cut on a 

CNC routing machine. To accommodate the working height of 

the router, the model was cut into multiple slices, using 2” and 

3” thick cross sections parallel to the waterline and eventually 

glued together to create the representative foam core (see Fig. 

2). 

 

 
Fig. 2. The CAD model of the hull used to generate the foam core. 

 



University of Michigan UM::Autonomy – Flying Sloth 2 

 

Next, with the foam cores upside down, stitched triaxial 

fiberglass, available from previous years, was used along with 

epoxy resin and hardener to permanently cover the hulls 

independently. The sides hulls’ foam cores were completely 

enclosed in fiberglass to ensure waterproofness. Once two 

layers were applied, the side hulls were individually attached 

to the main hull by applying fiberglass over two connecting 

joints (see Fig. 3).  

 

Fig. 3. Fiberglass hull connections 

 

To reduce overall weight and keep the center of gravity as 

low as possible, 0.5 inch honeycomb aluminum was used for 

the deck. This material provided a rigid and thick enough 

surface to securely screw components. The deck profile was 

determined by cutting a paper template to shape while placing 

it over the hulls. Using this template, the honeycomb 

aluminum was cut using a reciprocating jigsaw. In order to 

secure the deck to the hulls, two screws were fiberglassed 

upside down to each side hull and holes were drilled on the 

deck to prevent it from sliding off. In addition, to prevent the 

deck from lifting off of the hulls wing nuts and washers were 

used to clamp the deck on the electrical box edge, which was 

further waterproofed using foam seal typically used in 

weatherproofing window gaps. Finally, to aid in 

transportability and to provide attachment points for the crane 

at competition, four stainless steel handles were attached via 

fiberglass symmetrically around the main hull of the boat to 

prevent strain on the side hull and main hull connections (see 

Fig. 4). 

 

Fig. 4. Deck, deck attachments, and rear handles. 

 

 

 

 

 

C. Sensor Mounts 

This sub-section will present the types of sensors and the 

mounts used in this iteration of UM::Autonomy’s autonomous 

boat. 

We used the same general design for the waterproof 

camera mount as we did the previous year. The camera bottle 

consists of three main parts: the top case, the bottom case, and 

two lenses. The top case provides half of the camera mount, 

two frames for the lenses’ integration, and a slit for the O-ring. 

Moreover, the bottom case provides the second half of the 

camera mount, integration to the boat, and ridges to 

accommodate the O-ring and top case. Both cases were 3D 

printed in the University of Michigan’s 3D lab. Respectively, 

the front and back Acrylic lenses, fabricated by a laser cutter, 

allow the camera to see clearly through the case and allow us 

to know if the camera is on via the light on the back of the 

camera. The front of each lens is covered in a polarized film to 

reduce glare to the cameras. The bottom case is attached to the 

boat through the sensor tower and the top case slides directly 

into the bottom case (see Fig. 5). By bolting the cases 

together, the O-ring seal will be complete and the camera will 

be successfully waterproof. The camera is elevated as far 

above the surface of the water as the competition height limits 

allow to obtain the widest field of view. 

 

Fig. 5. A CAD model of the camera bottle used this year. 
 

 

Fig. 6. Hydrophone placements. 
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We can use up-to four Aquarian Audio Products H2a high 

impedance hydrophone to detect the locations of the acoustic 

beacon. These hydrophones were mounted using PVC pipes 

through which the cables would be fed. Holes were drilled on 

the deck at four positions and bulkhead fittings were used to 

mount the pipes. Three were aligned along the port side of the 

boat between the main and side hull and one was aligned with 

the rear hydrophone, on the starboard side (see Fig. 6). 

 

III. Electrical System 
 

The following section will describe the changes we have 

made to the electrical system of Flying Sloth compared to 

previous boats. The primary changes we made include the 

implementation of several new sensors and controls necessary 

to pilot an autonomous drone taking off from the boat’s deck. 

 

A. Electrical System 

 

Many of the components making up Flying Sloth’s 

electrical system are the same or equivalent to previous boat 

electrical systems. Similar to the previous year, we created a 

custom box (28” x 15.5” x 7”) out of sheet aluminum to house 

our electrical system and recessed it within the hull of the 

boat. The top of the electrical box is flush with the deck and is 

watertight from a seal around its top edge with the underside 

of the deck. This has allowed for greater deck space for drone 

landing and takeoff while also lowering our center of gravity. 

 

B. Motherboard and Sensors 

 

This year, Flying Sloth’s electrical system was housed 

within a aluminum box designed to be recessed within the hull 

of the boat. It was slightly larger than previous years so as to 

allow greater maneuverability and access to components. 

Within this box is housed the computer along with several 

sensors and controllers necessary for the boat. 

The electrical box is a closed system for which 

connections with sensors and other hardware is made through 

waterproof connectors imbedded within the deck. The two 

exceptions to this are the deck lid which opens allowing 

access to within the box and two water tubes through the back 

of the hull to a radiator used for water-cooling the 

motherboard’s CPU. 

Computationally, Flying Sloth has a water-cooled Intel 

Core i7 processor mounted on an ASUS Z97 Extereme6 

motherboard with 8 GBs of high-speed RAM. This powerful 

set-up allows for multiple processor intensive programs such 

as image processing to run at a high rate at the same time 

without any problems. 

Flying Sloth is equipped with a collection of sophisticated 

sensors that allow her to function autonomously. Specifically, 

she uses: a Hokuyo UTM-30LX Lidar, a Point Grey Firefly 

1.3PM USB camera, a Garmin 19x HVS GPS, a KVH DSP-

3000 fiber optic gyroscope (FOG), Aquarian Audio Products 

H2a high impedance hydrophones, a PNI Prime 3-Axis digital 

compass module, and a Sparton AHRS-8 inertial measurement 

unit (IMU).  

Flying Sloth uses a GPS, FOG, and compass in 

conjunction to identify her relative position and orientation in  

 

space. Additionally, she uses a single camera and LIDAR 

concurrently to allow her to visually and spatially perceive her 

surroundings. By using each of these sensors, Flying Sloth is 

able to understand and react to her surrounding environment 

effectively and efficiently.  

She uses the information from the GPS to determine her 

location and speed with data from the compass to accurately 

orient the data with regards to magnetic north. In addition, the 

FOG allows her to detect instantaneous change in her 

orientation on the horizontal plane. Each of these sensors 

communicate with Flying Sloth’s computer via a RS-232 

serial communication protocol.  

The AHRS-8 IMU provides additional velocity and 

acceleration data for error calculation with regards to previous 

sensors. It communicates via USB to Flying Sloth’s computer. 

The LIDAR is rotated over a 0.2 radian arc by a 

Dynamixel AX-12 servo to obtain a 3D point cloud from the 

planar LIDAR sensor. It and the fixed camera provide the 

necessary visual data for buoy detection and mapping over 

USB communication. 

One or two hydrophones are used to identify the location 

of an underwater pinger. They communicate with the system’s 

computer over 3.5 mm audio cables through corresponding 

sound cards. 

 

 
Fig. 7. A preliminary model of our custom PCB  

 

C. Custom PCB 

 

We continued to use this year a custom pcb that had been 

designed in previous years. This pcb acts as our main voltage 

bus, controls the boats two estop capabilities, and offers some 

protection circuitry for our battery. The greatest changes were 

the addition of larger lines to accomadate greater currents and 

the addition of several capacitors to attenuate sudden changes 

to the input voltage. 

The battery protection circuitry used is designed to 

prevent the boat from draining its 22.2 V lithium polymer 6S 

battery too low. This consists of a tri-state buffer and a voltage 

divider to provide the current battery voltage as the input to an 

Arduino. Once the Arduino detects that the battery has  
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dropped below a safe operating voltage threshold, it triggers 

the e-stop, causing the thrusters to lose power. Since the 

thrusters provide our largest power draw, by turning them off 

once a threshold voltage is reached, we are able to prevent the 

battery from draining below the 3 V per cell minimum 

voltage. 

 

D. Networking 

 

Much like previous years, we are using a pair of Ubiquiti 

Rocket M5’s to establish communication between the boat and 

our base station on shore. The on-shore-Rocket is attached to a 

laptop via Ethernet. On the bat, we use a power-over Ethernet 

adapter to power and communicate with the Rocket directly. 

The Rockets operate in the 5470MHz – 5825 MHz frequency 

range and there is an antenna connected to boat rockets to 

allow this communication.  

 

IV. Software Support Structure 
 

The following section will describe and elaborate on the 

structure used to support Flying Sloth’s autonomous 

operation. 

 

A. Operating System 

 

Our boat runs the LTS version of Ubuntu 14.04 off of a 

Samsung SSD 850 EVO. We choose this operating system for 

compatibility reasons with existing code and external libraries. 

 

B. Lightweight Communication and Marshalling 

 

We use Lightweight Communication and Marshalling, 

heareafter referred to as LCM, to perform inter-process 

communication on the boat. LCM is a low latency, language 

independent, message transfer protocol designed by Olsen, 

Huang, and Moore [1]. LCM allows us to define simple 

messages that can be published to an open channel. An 

example of an LCM message can be seen in figure 8. 
 

Fig. 8. An example LCM message for the FOG sensor 
 

Each LCM message is buffered before being published to 

a shared memory address. Any other process on the boat can 

subscribe to the channel and extract information through the 

LCM interface in a format specific to the current language. 

 

V. General Code Structure 
 

Our code structure is broken into three layers: driver, 

detection, and decision. Each layer communicates through 

LCM and all of the layers and the general form of the code 

can be seen in figure 9. 

 

 

A. Driver 

 

The driver level is the lowest layer of boat code and the 

layer that communicates directly with the boat hardware. Each 

process communicates with a single sensor directly through a 

serial interface and publishes the data after some light 

formatting to LCM. We attempt to minimize preprocessing as 

much as reasonably possible in this layer both in order to 

allow for faster polling rate and in order to allow for 

modifications to the processing algorithms without affecting 

this layer. 

 
 

Fig. 9. The general structure of Flying Sloth’s code base. Each square 

is a separate process that communicates via LCM. Each arrow 

represents an LCM channel or groups of channels. 

 

B. Detection 

 

The detection layer runs in tandem to and is dependent 

upon the driver level. The detection layer identifies objects, 

updates positional estimates, and runs our SLAM system. A 

map of the currently observed course and current state of the 

boat is published over LCM along with an estimate of the 

pinger’s position. 

 

C. Decision 

 

The decision layer is the final layer on the boat and 

controls the direction and position of the boat in the real 

world. The decision layer runs a route planner which 

implements a list of tasks that the boat must perform. The 

tasks are abstracted and can be as simple as navigating to a 

GPS position and as complex as navigating an entire obstacle 

course. The decision layer publishes waypoints that the boat 

should travel to. The actual movement of the boat such as PID 

and motor control is accomplished in the control system 

module. 

 

VI. Software Utilities 
 

In this section, we will describe and discuss the utilities 

we use in testing and managing Flying Sloth’s computer. 

 

A. Simulation 

 

Due to the winters in Michigan, it is impossible to test the 

boat for a large portion of the year. A large benefit of using 

LCM is the ability to collect and playback logs. Our logging 

program can be seen in figure 10. 
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The use of the logging program allows us to perfectly 

simulate the driver level of our boat and test the entire 

detection layer accurately. The simulation program does have 

some drawbacks however. It is unable to react to the outcomes 

of the decision layer and requires the boat to have physically 

been run on any course that needs to be simulated. 
 

Fig. 10. Our logplayer can simulate all or a subset of LCM channels 

that run on the boat. The LCM messages are posted in the relative 

order and relative timing that they were received when the log was 

actually taken. 

 

B. Bot-Procman 

 

Due to the design, our process manager can be used both 

for test/debug sessions and competition runs. The process 

manager is invoked with a configuration file as an argument. 

The configuration file names all the process that can be run. 

Because the configuration is not hard-coded, we can use a 

different configuration when testing as opposed to a trial run, 

affording us great flexibility during both runtime and testing 

sessions. In addition, the process manager sports an interactive 

graphical user interface for managing the processes. This 

allows the developer to start and stop a process or view the 

process’s output without searching for the terminal it was 

started from. This aids us in debugging any problems Flying 

Sloth may encounter because we can see the sensor data as 

well as any LCM messages being sent. 

The process manager also attempts to ensure that 

processes are running and working as intended. For this, the 

process manager will restart a process if it crashes for any 

reason. Also, the process manager listens to the LCM channels 

of the managed processes. Using the frequency of publishes, 

the process manager can determine if a process has become 

stuck even if it has not terminated. These features aim to 

improve robustness by preventing a total system failure due to 

a minor bug. 

 

VII.   Hydrophone Implementation 
 

Flying Sloth has been modified to support the use of four 

hydrophones. In our implementation however, she will only 

make use of one or two when being used in conjunction with 

the docking challenge. This section will discuss Flying Sloth’s 

method for determining the pinger’s location. 

 

 

If only one hydrophone is connected, Flying Sloth will 

approach each gate and record a ping. Then, she will dock at 

whichever gate has the most prominent ping in the frequency 

range of 25 KHz to 40 KHz as determined by using a high 

pass filter and Fast Fourier Transform (FFT).  

If two hydrophones are connected, then Flying Sloth will 

record a ping while in-between two gates. Using this 

recording, a cross-correlation is performed to determine the 

time difference of arrival (TDOA) between the two 

hydrophones [2]. Based on the positioning of the 

hydrophones, the TDOA will tell us if the ping lies to port or 

starboard. Using this determination, Flying Sloth will either 

dock at the single dock to a side or perform a second recording 

between the remaining two gates. 

 

VIII. SLAM Implementation 
 

Flying Sloth has a redesigned simultaneous localization 

and mapping (SLAM) system which is vital in many of the 

challenges this year. While the boat had an Extended Kalman 

Filter based SLAM that was built and utilized in previous 

years, this system was poorly maintained and eventually broke 

down entirely. To avoid repeating this problem, a new SLAM 

system was designed with a focus on ease of understanding 

and maintainability.  

The ultimate goal was for the new SLAM system to be 

extensible and easy to pass onto new team members so that it 

would be usable even after the original programmers 

graduated or left the team. To achieve this goal, the new 

design was based on a fairly simple occupancy based grid 

map. While this design is less state of the art, it is much easier 

to explain to new team members that lack the theoretical 

background for a more complex system. 

 

A. Localization 

 

The first aspect of Flying Sloth’s SLAM is Monte Carlo 

localization. In each iteration of the system, both Generational 

and Non-Generational particles are created. Generational 

particles are created by taking particles from the previous 

iteration and predicting their location forward using velocity 

data from the boat’s IMU and GPS. Non-Generational 

particles are simply generated in a Gaussian distribution 

around the boat’s most recent pose estimate.  

Each particle is then assigned an angle using a Gaussian 

distribution around the FOG angle. Each of the generated 

particles represents one possible pose of the boat, which is 

made up of an X position, a Y position, and a current angle 

relative to north. 

Once the particles have been generated, they are put 

through a weighting process. By comparing to the boat’s 

current angle and position (given by the GPS and the FOG), 

the system assigns a probability that a given particle is the true 

pose of the boat to all generated particles. A similar weighting 

process is run using the boat’s LIDAR. By comparing the 

most recent map to the current point cloud created by the 

LIDAR, the boat weighs each particle. A high weight in this 

case means that the current point cloud agrees closely with the 

map that has been generated in previous iterations of the 

system. Finally, these weights are combined and the particle  
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with the greatest weight is selected as the current pose of the 

boat. 

 

B. Mapping 

 

The second aspect of SLAM is mapping. The map is 

represented as a grid of values from 0 to 255, with 0 being 

definitely empty and 255 being definitely full. After the boat 

uses localization to find its pose, it rotates the current point 

cloud from local coordinates (relative to the boat) into the 

coordinates of the SLAM map.  

Flying Sloth’s LIDAR pans up and down to get a 3D 

view, but the SLAM map is 2D. To simplify this view down to 

a 2D map, the system records a hit at a certain position if there 

was a hit there at any point in the LIDAR pan. This ensures 

that no position that contains an object at any height will be 

seen as empty. For every LIDAR hit, the value of the hit 

position gets incremented. Additionally, the value of all points 

between the hit and the boat get decremented since there could 

not be an object there if the LIDAR passed through its 

location. If no hit was recorded at a certain angle from the 

boat’s front, then all squares from the boat to the minimum 

distance at this angle are decremented.  

Over many iterations this system will converge on a map 

that the boat can utilize with reasonable certainty. It is 

important to note that any area not covered by the LIDAR 

minimum range is not modified in any way, ensuring that the 

map is not changed unless the boat has new information about 

the area in question.  

 

C. Evaluation 

 

The new SLAM system was reasonably successful in its 

goals of ease of understanding and ability to maintain. The 

original developer of our new SLAM system graduated in the 

Fall semester, requiring the team to transition the project to a 

new manager immediately. In the following semester, the new 

manger has successfully taken over the code base, added 

compass and IMU support, and improved the documentation 

for future management. The code that depended on the prior 

SLAM was fairly easy to adapt to the new system; All vital 

functions are now working with the new system. 

 

IX. Challenges 
 

Our approaches to address the dramatic changes to each 

challenge as well as the new challenges will be described in 

the following section. 

 

A. Autonomous Navigation 

 

Flying Sloth will go forward from the starting position 

until two gates are detected. Then, Flying Sloth will head  

along a straight-line path perpendicular to the two gates until 

two more gates are detected and exit through them. 

 

B. Speed Challenge 

 

Flying Sloth will first identify the starting gates. Then, Flying 

Sloth will head along a straight-line path perpendicular to the  

 

two gates until the blue mark buoy is detected. Flying Sloth 

will circle that buoy counterclockwise and head back to the 

starting gates. Using SLAM, Flying Sloth will know 

approximately where these gates are. These gates will be 

verified using LIDAR and camera data and then exited 

through.  

 

C. Automated Docking 

 

The first bay will be located using the hydrophone 

method described above and Flying Sloth will dock at that 

bay. Each bay will be identified using camera and a buoy 

detection algorithm. After docking, Flying Sloth will back up 

and return to the staring position. Since we do not have a 

UAV that meets the required safety guidelines, we are unable 

to completely verify the location of the second bay. Thus, we 

will randomly select one of the bays. 

 

D. Find the Path 

 

Flying Sloth will first circle the course once or twice to 

build a comprehensive SLAM map. Then, openings wide 

enough for the boat will be labeled and visited one by one 

until the middle of the obstacles can be reached. If an opening 

turns out to be a dead end, Flying Sloth will back up and 

continue to the next opening. While going through the 

opening, buoys will be avoided using an obstacle avoidance 

algorithm that steers Flying Sloth away from buoys directly in 

front. Once inside, Flying Sloth will detect the can buoy in the 

middle, circle it, and then exit through the same opening. 

 

E. Follow the Leader 

 

Flying Sloth will first wait for the flag with the correct number 

to appear. The correct number will be identified using camera 

data passed through a number detection algorithm. Then, 

Flying Sloth will enter the carousel. She will move in a 

circular path and avoid the flags using LIDAR. If the flag in 

front gets too far away, she will go faster. If the flag in front 

gest too close, she will go slower. Using SLAM, Flying Sloth 

will know when a full rotation has been completed and will 

exit the carousel. 

 

F. Return to the Dock 

 

To return to the dock, Flying Sloth will head towards the 

GPS coordinates of the dock while using her obstacle 

avoidance algorithm to avoid any objects in the way. 

 

X. Conclusion 
 

Flying Sloth underwent several major changes this year to 

better meet and adapt to old and new challenges. A new hull 

design was used for greater stability and maneuverability and 

we adapted and rewrote our SLAM code for clearer and easier 

implementation. Each of these changes and others together 

help make Flying Sloth an effective and versatile vehicle for 

navigating and completing each challenge. 
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