
UM::Autonomy Serenity,
A Rigourously Refined ASV

Anthony Bonkoski, Eric Rossetti, Michelle Howard,
Dorian Brefort, Dominique Kudzia, Tyler Olsen,

Steve Ratkowiak, Steve Orloff, Adrian Choy

University of Michigan
Ann Arbor, MI 48109

Figure 1: Serenity

ABSTRACT
Serenity is a fully autonomous surface vehicle with
a pontoon hull design for maximum stability, es-
sential to the electronic systems. This boat was
designed, built and tested for the purpose of com-
peting in the Fifth Annual AUVSI Autonomous
Surface Vehicle Competition, where it will exhibit
its ability by attempting the challenges that have
been presented for this year’s poker themed com-
petition. The main focus of the team this year was
to redesign the vision and electrical systems. This
paper explains the changes and adaptations that
have been made to our boat since last year’s com-
petition.

1. INTRODUCTION
Serenity is the UM::Autonomy submission to the Fifth

Annual AUVSI Autonomous Surface Vehicle Competition.
Serenity was designed to execute the challenges of the Poker
themed competition. Serenity is a fully-autonomous vehicle
and has taken several years to build if we take into consider-
ation the design time of Wolvemarine, Serenity’s predeces-
sor. Because of this, we cannot discuss every facet of our

system in this paper. Therefore we will focus on the im-
provements that we have made since last year’s competition.
In the past few years we have emphasized the design, build,
test methodology in the construction of our entries. We used
the same successful approach this year. Learning from our
successes and weaknesses of the past, we developed our lat-
est iteration, Serenity. While Serenity appears similar to its
predecessor, Wolvemarine, it has many changes, including
an entirely new electrical system, vision system and the ad-
dition of some very powerful sensors. We have also imple-
mented a novel and ground-breaking buoy chanel navigation
algorithm and have spent countless hours rigorously testing
our navigation capabilities.

Throughout the remainder of this paper we will discuss
these modifications and improvements, as well as other ones
that have been made since last year. These changes have
made Serenity our most reliable and powerful submission to
this competition.

2. HULLS AND DECK

2.1 Hull Design
We kept the same hulls as last year, but painted them

maize and blue to better represent our school colors. The
design evolved from a small waterplane area quadruple hull
which we modified to become a twin hull. We made these
modifications to the hulls shape to allow for better perfor-
mance on the water. We designed the hulls to be more stream-
lined to help with tracking and reduce the water flow separa-
tion from the hull, hence reducing drag. Also, we redesigned
the bow of the hulls to resemble the bow of a pontoon vessel.
This design allows for the hulls to be semi-planing and al-
low the autonomous surface vehicle to travel at much faster
speeds safely. The redesigned hulls are very stable in pitch,
roll, and yaw and thus provide a stable platform for the ve-
hicles electronic systems.

2.2 Hull Fabrication
The hulls were fabricated last year by using a male mold

fiberglassing process. Foam molds were fabricated using a
CNC Router, and then two layers of fiberglass were added.

1



Figure 2: Hull in the paint booth

This year, the paint scheme was updated to resemble the
iconic Michigan ”Winged Helmet.” An epoxy layer was added
to fix some damage from the previous years, and then an-
other clear coat was added to waterproof and protect the new
paint.

2.3 Deck Design
The deck of this vessel is similar to previous years with

a few major changes. One of the changes that was imple-
mented this year was the installation of ballast points at each
corner of the deck. This allowed us to add and remove bal-
last weight easily. Another major change that was added this
year was a bracing system attached to the bottom of the deck.
This system prevents the hulls from shifting under the deck.

3. ELECTRICAL SYSTEM

3.1 Design
We almost completely re-designed our electrical system

from previous years. We decided to go with a modular de-
sign that will make it easier for this system to be adapted
for future challenges. One part of the design that did remain
the same as Wolvemarine’s was the motor power system and
our power hub. Serenity’s system has a completely new wire
routing scheme and we converted to a one-PC system. We
also add several new sensors and servos to make Serenity
much more capable.

3.2 Box Layout
This year we put a lot of our time and energy into re-

designing our electrical box. One of the main goals of this
design was accessibility. We wanted to have easy access to
all of the components, to allow for easier troubleshooting
and repair. We also wanted this box to be simpler and more
organized. We designed this box to be shorter and flatter
to give us the accessibility we wanted as well as to lower

Figure 3: New Electrical Box

the center of gravity, to make the boat more stable in the
water. Another major improvement with this system is, we
switched from running our software on two computers to one
computer. This reduces the dependence on network comu-
nication inside the electrical box as well as eliminates many
software synchronization issues. We designed this new box
to avoid having any components attached to the lid of the box
for waterproofing purposes as well as to keep wires from be-
ing pinched in the hinges.

3.3 Cooling System
The new electrical box has a new cooling system that is

much more efficient than the system that was used in pre-
vious years. This new cooling system consists of two fans,
similar to last years, except the fans are located on the end
of the box instead of the top. Another major difference is,
both fans are facing the same direction, to double the air-
flow. The airflow now goes in the forward facing side of the
box and out the rear facing side. This box has slits along the
rear facing side to allow the hot air escape from the box. We
also oriented the internal components of the box so that they
would not block any airflow through the box. Also this year
we chose a lighter colored box, to keep it from overheating
in the sun.

3.4 Sensors and Servos
For dead reckoning purposes we rely on GPS, Compass,

and Fiber-Optic Gyro sensors:

GPS: Garmin 16-HVS
Used primarily for velocity measurements to project the

state forward

Compass: Ocean Server OS5000
Used primarily for pitch and roll measurements and to

compute an initial heading for correlating GPS and Gyro
measurement in our Extended Kalman-Filter SLAM.

2



Fiber-Optic Gyro: KVH DSP-3000

Used exclusively for yaw measurements as its superior
drift rate of less than 1 degree per hour provides us with
nearly perfect yaw estimation.

For perceptual purposes we use the following sensors (pre-
cise usages are explained in detail in Section 4):

Two Point Grey Fire-Fly MV CMOS cameras
Hokuyo UTM-30LX LIDAR actuated on a Dynamixel AX12
Servo
FLIR Tau 320 IR Camera for heat detection
MaxBotix Sonar sensor for underwater detection

We have added several servos to make our ASV much
more capable. These include:

Two Dynamixel AX12 Servos for a pan/tilt water cannon
aiming system
Two Dynamixel AX12 Servos for deploying a ramp and teth-
ering an amphibious RC car

4. VISION SYSTEM
The basis for Serenity’s vision system has its roots in both

our 2010 and 2011 entries (”Mjolnir” and ”Wolvemarine”
respectively). Mjolnir relied heavily on image based detec-
tion while Wolvemarine relied heavily on 3D ranging data.
By using inspiration from years past combined with some
novel techniques, we have developed a very balanced and
well-polished sensor fusion vision system. One could de-
scribe Serenity’s approach as camera driven, while heavily
supplemented by spacial 3D information.

4.1 Detection from Camera Images
A notable change from Wolvemarine is our increased re-

liance on camera-based detection. Wolvemarine attempted
to detect all objects geometrically and used camera data only
to discover object color. Serenity instead uses the image data
to actively detect objects of interest.

We begin our buoy detection by performing a HSV based
blob detection of each camera image. This process includes
several filters and thresholds to reduce false detection rates.
However, this alone is not enough to ensure reliable buoy
detection. There are numerous situations that can cause false
detections such as lighting conditions, vegetation on the shore,
and pedestrians.

For the challenge stations, we have employed a variety of
techniques including: HSV thresholding, blob dilation, line
fitting, and other constraints. These will be further explained
in the corresponding sections.

4.2 Point Cloud Generation
For spacial data we utilize a 3D lidar based system. Our

Figure 4: Point cloud visualization taken during a cal-
ibration session. Notice the checkerboard in the image
and the corresponding plane in the point cloud. The goal
of calibration is to isolate each and compute parameters
for the transformation.

Hokuyo UTM-30LX is actuated by a Dynamixel AX12. Us-
ing returns from both the servo and laser, we can construct
a set of three dimensional range points, which we refer to
as the point cloud. For a detailed explanation of point cloud
construction see the corresponding sections in our competi-
tion paper for Wolvemarine.

For Serenity, we have optimized and improved the utility
of our point cloud data. First, we mounted the lidar beneath
the deck. This was done to eliminate returns from debris in
the water and reduce the required rotation angle for the buoy
channel. Second, we implemented a dynamic servo control
system that allows the route planner to reconfigure the rota-
tion range during a run. This new feature allows us to use
a very small range for the buoy channel without sacrafic-
ing our ability to generate point clouds of challenge station
tasks. By comparison, Serenity can produce buoy channel
point clouds at 8 Hz while Wolvemarine could only produce
them at less than 1 Hz. This improved point cloud frequency
allows us to perform sensor fusion detections with both vi-
sual and 3D spacial information at a rate of 8 Hz!

4.3 Calibration
Before data correlation can be performed, we need to ob-

tain an accurate calibration between the laser and camera.
This step was also performed by Wolvemarine, but with only
limited success. For Serenity, we have corrected the issues
in the calibration procedure.

Calibration requires a large set of image/laser pairs that
can be used to compute both camera intrinsics and the rigid-
body transform between the sensors. We use the extrinsics
model given in [5] and the paramters are computed using the
method described in [3].

3



To collect the laser and camera data, we use a large checker-
board that can be easily detected with OpenCV. We also de-
veloped a new 3D point cloud visualization to replace last
year’s point cloud selector (See figure 4). Using this inter-
face, the user can view the selected region from many differ-
ent direction to make sure he/she isn’t accidentally selecting
incorrect points that were being occluded. This new point
selector as well as correction of a few bugs in point cloud
generation has yielded the very accurate calibration our ap-
proach requires.

4.4 Spacial and Visual Data Association
With an accurate calibration, we are now able to transform

3D ranging data directly into each camera’s pixel space. This
can be done with a simple rigid-body transform followed by
some corrections for lens distortion as discussed in [5]. We
perform all visual/spacial data associations in pixel space.
Depending on the object that is being detected, different con-
straints are placed on the correlations. These are explained
in the below sections.

5. FEATURE DETECTION

5.1 Buoy Detection

Figure 5: A Visualization of our buoy detection. The
small red circles are blob detections. The yellow lines
are points from the 3D point cloud. The colored stars
indicate that laser points and blob detections have been
correlated to produce a buoy detection.

For buoy detection we perform blob and point cloud cor-
relation. By correlating blobs with transformed laser points
within a reasonable radius and of reasonable quantity, one
can develop a workable buoy detector. However, experimen-
tally, this simple approach fails whenever the shore line is
near. When this occurs, there are a plethora of laser points
that will easily be correlated with blobs. From experiment,there
tend to be many false detection blobs for the on-shore vege-
tation.

To reduce this vulnerability, we filter the point cloud data
to discard large clusters of nearby points. We accomplish

this goal using the Union-Find data-structure. We begin by
reducing all points to an X-Y gridmap. We can then join
nearby points to form several clusters. Next we can apply
constraints on each cluster, such as size, to discard unlikely
candidates. Clusters that are not discarded in the filter are
then correlated with the image-based blobs as before. Be-
cause our laser range-finder doesn’t return off the water sur-
face, large clusters correspond to the shore, medium clusters
correspond to buoys, and small clusters correspond to either
noise or to debris in the water. By discarding all large and
small clusters, we can be reasonably confident in the result-
ing correlation.

5.2 Poker Chip Station Detection
Detection begins by searching for linear orange blobs in

the image. Each blob is checked for linearity using the min-
imum eigenvalue of the pixels’ covariance matrix. Next, we
fit a line to each linear blob and finally we search for two
reasonably parallel lines. These parallel lines should be the
ramp edges. Finally, using the lines, we estimate a rectangu-
lar region in which the ramp resides.

To compute the location and orientation of the ramp, in re-
spect to the boat, we select all 3D laser points that fall within
the rectangular region bounded by the fitted lines. These
points can then be averaged to produce the location of the
ramp, and we can perform plane and line fitting to compute
the orientation of the ramp. To make additional guarantees
on ramp existence, we require that there is a sufficient num-
ber of shore line laser points nearby (see section 7.2.1 on
Shore Following)

Figure 6: Left: Ramp detection Right: A visualization of
the shore (in cyan)

5.3 Jackpot Station Detection
Detection of the jackpot station has been made a bit easier

this year by redundancy. In previous years, there was only
a single button and thus little contextual information to help
reliable detection. Since there are now two buttons, we can
use an approach similar to ramp detection to search for both
simultaneously and thus have a better existential certainty.

We begin detection by finding all red blobs in the image.
We then filter these results by applying size and circularity

4



constraints. Circularity is enforced by using the eigenvalues
of the covariance matrix. Next, we try to match similarly
sized blobs that are on approximately the same horizontal
line. We then improve this static result by tracking these
blobs between frames. This approach allows us to discard
most noise and ensure a reliable detection. Since, these but-
tons are too small to produce laser returns, we utilize our
shore map laser points to compute an approximate location
of the buttons.

5.4 Cheater’s Hand Station Detection
For the Cheater’s Hand station, we are prepared to employ

a couple different strategies, depending on competition dy-
namics. We intend to use the cards on the sign as unique fea-
tures and perform either Template Matching, Nearest Neigh-
bor Classification, or SURF (Speeded-up Robust Features)
feature extraction. By requiring that all cards be adjacent
and aligned, we can be certain that these features correspond
to the station in question. We will use the same technique as
the Poker Chip station to capture laser points and compute
position and orientation.

When we are reasonably close to the sign, we will use
the blue square to localize our aiming. We can extract the
square in a way similar to ramp edge detection. Namely, we
will extract blue lines and attempt to fit them into a square.

5.5 Hot Suite Station Detection
We will treat to Hot Suite station much like the Cheater’s

Hand station. Using a variety of feature detection techniques,
we will search for each sign individually and then require a
grouping of the individual detections. Using the calibration
between the cameras and our IR Camera, we will correlate
and choose the hottest sign for reporting. Incidentally, there
are no special route planning required for this task, allowing
us to send a wireless message to the ground station as soon
as detection is complete!

6. SLAM
Serenity utilizes an Extended Kalman-Filter SLAM feature-

based mapping system [4]. Since there are few things to lo-
calize on in the competition pond, we use a feature-based
mapper and fall back on dead-reckoning when feature de-
tections are not available for localization purposes. Due to
the inclusion of the highly accurate Fiber Optic Gyro (FOG),
we now use the FOG returns exclusively for heading infor-
mation. On initialization, we collect a set of compass and
fog observations and compute a “globalization” constant for
the FOG measurements. This allows us to use both GPS and
FOG data in a global frame for the purpose of dead reckon-
ing.

For building data correspondences between buoy detec-
tions, we use the recursive Joint-Compatibility Branch and
Bound algorithm [2]. Since challenge station features are
unique, there is a known correspondence and data associa-
tion is trivial.

Figure 7: A Visualization of our SLAM map. Covariance
is shown using an ellipse. Large ellipses correspond to
high uncertainty.

We have also added some capabilities for map correc-
tion. These include: detection and eliminantion of dupli-
cate features and detection of map corruption. By maintain-
ing a good map of the competition environment, we are af-
forded many advantages that are not possible with a simple
short-term mapping technique, namely, adaptive buoy chan-
nel navigation. This will be discussed at length in the fol-
lowing section.

7. ROUTE PLANNING

7.1 Speed Gate and Buoy Channel Planning
Having a reliable map allows many improvements to be

made over simple instantaneous detection navigation. In
short, each unique buoy that is detected and mapped tells
something about the location and orientation of the buoy
channel in general. This suggests that the location of the
channel can be inferred directly from the buoy detections.
Moreover, using some subset of the buoys, it should be pos-
sible to fit a line down the middle of the buoy channel. If
a line can be accurately fitted to the buoy channel, naviga-
tion is reduced to the well-studied problem of line-following.
This technique amounts to a higher order of planning, where
buoys are considered in context to nearby buoys as opposed
to a local statically-determined plan.

Next, we will show how such a goal can be achieved.
We will assume that there is a low-level system that actively
avoids obstacles (see section 7.3). Suppose we reduced the
problem of buoy channel navigation to a problem of node
traversal of a connected graph, where the nodes are buoys.
We might construct such a graph by starting at the origin
and drawing an edge to the nearest unconnected buoy. In
this manner we can connect the entire set of known buoys.
We now have a rough first-order approximation of the buoy

5



(a) Ground Truth of the buoy channel.

(b) 1st order approximation of buoy channel location. This buoy
channel line very roughly approximates where one would expect it.

(c) Smoothed buoy channel line by allowing buoys #1 and #3 and
buoy #4&5 and ? to be paired. Notice how accurate the buoy chan-
nel line is even in the face of such poorly identified buoys. Also,
notice that this approach is completely independent of color as it
uses spacial and angular metric to perform channel line fitting.

Figure 8: A Comparison of Approaches to Buoy Channel Navigation. Figure (a) shows the ground truth of the buoy
channel. All other figures show how the channel is perceived. Notice that the boat fails to identify buoy #2 and miss-
colors buoy #3 causing miss-pairing. Also, notice that the boat thinks buoy #4 and #5 are the same buoy and the boat
hallucinated and an additional buoy is denoted as ’?’

6



channel. If we attempted to navigate this graph, we would
indeed navigate the channel, albeit rather humorously.

A buoy channel line is a composition of several line seg-
ments li which can be parameterized by angle and magni-
tude: (θi, di). From observation, a correct buoy channel line
would be one that has a minimal error in the change of angle
between the different line segments.
Mathematically:

Channel Error:
n∑

i=2

‖θi − θi−1‖

To make the channel line reasonable, we iteratively merge
(pair) nodes by replacing them with a midpoint node. To
accomplish this, the pairable function is defined to decide
when it is appropriate to pair various nodes. This function
may pair buoys using a variety of possible heuristics such as
color, distance, angle, etc. After merging a pair of nodes, the
channel error is computed using the above summation and
the result is compared with previous channel errors. The
nodes are paired using a greedy approach, which, experi-
mentally, appears sufficient.

This approach relies heavily on pairing nodes that will
reduce the angular error. It’s crucial that pairable is rea-
sonable with its pairing decisions. If pairable is too liberal
with pairing, the result will become a single straight line. If
pairable is too conservative, the resulting path will result in
a zig-zag behavior. Neither of these are desired, although
arguably neither is a complete system failure. Thus, it is im-
portant to choose a reasonable heuristic for pairing. Experi-
mentally, we have found that the following approach works
remarkably well:

1) Only allow buoy nodes to be merged (paired), essen-
tially a midpoint node cannot be merged with any node.

2) Set a reasonably liberal distance threshold such that any
node further than the threshold distance cannot be paired.

Note that the above heuristics do not utilize buoy color to
make pairing decisions. An interesting side-effect of this al-
gorithm is the ability to infer the buoy channel without color
information. Using spacial and angular information, we can
reliably estimate the location with only a subset of the buoys
that denote the channel.

We have used this approach for every successful buoy
channel navigation this year. It has been shown to be incred-
ibly dynamic and adaptive to uncertain situations. Figure
8 gives an example of one of our early navigation attempts
where the perceptual conditions were incredibly poor. It is
important to note that Figure 8 represents actual data and
that navigation was actually successful while being able to
see only a fraction of the buoys.

7.2 Challenge Task Planning

7.2.1 Shore Following
To allow Serenity to search for challenge stations along

the shore, we have implemented an occupancy gridmap-based
shore mapping system. We first construct an X-Y gridmap

Figure 9: A Visualization of our shore detection algo-
rithom. On the left: The dilated gridmap of all the laser
points from the shore. On the right: The shore grid re-
duced to just the edge. A line can now be fitted to the
edge. Notice the cyan circle: this circle is a waypoint
computed for the purpose of shore following.

from the point cloud data. The gridmap is then dilated to
join as many nearby grid cells as possible. We then can find
reasonably large grid cell clusters and reduce them to only
edges.

Next we eliminate all edges that would be occluded from
our boat (these discarded edges are a result of the gridmap
construction and dilation). At this point we have a single
chain of gridmap cells that mimic the contours of the cor-
responding shoreline. As a final step, we perform a Least
Squares line fitting to the resultant edge and choose a way-
point along the line.

After completing the buoy channel, Serenity will begin to
follow the shoreline until a challenge station has been de-
tected and mapped within a reasonable certainty.

As a conclusion, we can also use the shore mapping as an
alternative approach to filtering laser data for buoy detection
as discussed in section 5.1.

7.2.2 The Poker Chip
When the poker chip station is detected and mapped, Seren-

ity navigates away from the shore to a more ideal vantage
point (computed using the ramp’s position and orientation).
As Serenity approaches the ramp, instantaneous ramp detec-
tions will be used to perform PID alignment to the ramp.
With the camera configuration, it’s easy to know when the
ramp has been reached. There should be a large linear or-
ange segment on the edge of each camera.

When Serenity reaches the Poker Chip Station’s ramp, our
docking sequence will begin. This phase results in lowering
a ramp mounted on the front of our ASV actuated by a Dy-
namixel AX12 servo. Using the servo’s load feedback, we
can detect when our ramp has been deployed.

We have strategically mounted our amphibious RC car on
the edge of the ramp for ease of deployment. As soon as our
ramp has made contact with the station’s ramp, the RC car

7



has only about a foot to drive to reach the station’s ramp and
begin exploring for the poker chip. For ease of bringing the
RC car back to the boat, we have employed a tethering sys-
tem made possible by an additional Dynamixel AX12. Ei-
ther when the car has successfully captured the poker chip or
when failure is imminent, Serenity will be able to easily pull
the RC car back to the mothership and continue the voyage.

7.2.3 The Jackpot
Serenity will approach the Jackpot station in a way sim-

ilar to the Poker Chip, although arguably simplified. After
the Jackpot station is mapped, Serenity will line up for an ap-
proach and begin navigating towards the station using the lo-
cation in the map. As the station nears, instantaneous detec-
tions will be used to issue commands to the PID controller.
By keeping the targeted button between the two cameras, we
can align the boat to hit the button. When Serenity is suffi-
ciently close, our sonar sensor will be used to check for the
existence of the underwater buoy.

7.2.4 The Cheater’s Hand
As discussed in the feature detection section, we will use

the blue square to detect the precise location to aim our water
cannon. Correlating with the point cloud, an (x, y, z) aiming
coordinate will be extracted. We then compute the water
cannon projectile to determine the appropriate angles to set
out pan/tilt water-cannon system. The pan/tilt driver also
provides status feedback so we can determine if the target
is beyond the aiming range. We will use this feedback to
reposition and correct as needed.

7.3 Obstacle Avoidance
By delaying obstacle avoidance to a later planning stage

we are able to significantly simplify planning. We allow the
individual planning systems to command any desired way-
point with little concern about how to reach such a locations.
Our obstacle avoidance system then constructs an occupancy
grid map. This map is dilated to allow the boat to be treated
as a single point and than the Wavefront algorithm is used to
compute the shortest path. We then select a fixed point on
the path as a lookahead waypoint and we order the low-level
navigation systems to this location.

8. UTILITIES
We use a variety of utilities to improve software develop-

ment and make our entire software stack work together in
harmony. These include a network message passing system,
process manager, visualization library, and special calibra-
tion application. We discuss some of these tools below.

8.1 LCM: Lightweight Communications and
Marshalling

LCM is a message passing system developed by MIT for
the Darpa Urban Challenge in 2007 [1]. This system is spe-
cially designed for low-latency communications by using

a simple UDP-based communication scheme. By defining
specialized message types, bindings for C/C++, Java, and
Python can be automatically generated and all messages can
be automatically marshalled. This allows us to write high-
performance code in C and take advantage of Java for high-
level code and for visualizations. LCM also provides log-
ging and playback capabilities which have proven to be in-
valuable for debugging.

8.2 Bot-Procman: Process Management

Figure 10: Bot-procman

One of the large failures in the execution of Wolvemarine
was difficulty in launching due to the high number of pro-
cesses that were required for our entire system to work. We
utilized a process manager that was developed in-house, but
was still a bit light on features and buggy. In addition, the
process manager was a late addition to the design and had
poor overall integration.

This year we’ve moved to the well-tested and proven bot-
procman that was developed alongside LCM for the Darpa
Urban Challenge. This process manager has many advan-
tages such as: the usage of LCM as a backbone to manage
processes across multiple machines, the ability to group pro-
cesses for greater organization, and well-polished interface.

8.3 Vis: Visualization Library
One of the most crucial aspects in autonomous robotics

is having a clear understanding of how your system is re-
acting to the environment and why. With only a simple
printf style debugging scheme, this goal is difficult if at
all possible. Thus, developing versatile and intuitive visual-
izations is perhaps the most useful tool a roboticist can em-
ploy. For this purpose we use V is, a 3D visualization library
developed by the University of Michigan April Labortory
(april.eecs.umich.edu). V is is a Java library built around
OpenGL that allows the user to construct very useful visual-

8



Figure 11: A screenshot of our PID tunning application.
The desired path is red while the actual path is black.
Notice the sliders at the bottom: these allow PID terms
to be adjusted in real-time

izations with surprisingly little effort or background knowl-
edge. Figures 4-9 and 11 were all constructed using V is.

8.4 PID Tunning
One of the processes that prove frustrating to most devel-

opers is the process of PID tuning. From our competition
showing with Wolvemarine, our team is clearly not without
these troubles. Some part of these frustrations stem from the
uncertainty about how the PID system is performing. It can
be incredibly challenging to decide which PID term to adjust
without having appropriate ground truth to compare against.

To help ease PID tuning, we have developed a special ap-
plication to assist us. Our application allows the user to draw
a poly-line of the desired path for the ASV to travel, and
then it plots the actual path in real time. The application also
allows the user to adjust PID terms within the application it-
self. These features enable quick PID tuning and allow the
user to compare different settings quickly and effectively.

9. CONCLUSION
This year, we began with a goal to improve all the rough

areas of past designs, and redesign and reinvent where neces-
sary. We heavly stressed the importance of rigorous testing
in an effort to construct an entry that performed as best as
possible. We worked hard to remove as many failure modes
as possible and to design a system that was easy to deploy
and easy to debug by using visualizations and other software
systems.

By rejuvenating our hulls, redesigning our electrical sys-
tem, reworking our perception and planning techniques, we
have developed a very refined autonomous vehicle. To this
date Serenity has successfully navigated over ten buoy chan-
nels and our work on shore following and challenge station
detection has shown much promise. We unequivocally be-
lieve that Serenity is UM::Autonomy’s best Roboboat entry
to date and we eagerly await this year’s event.

10. REFERENCES
[1] A. Huang, E. Olson, and D. Moore. LCM: Lightweight

communications and marshalling. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2010.

[2] J. Neira and J. Tardos. Data association in stochastic
mapping using the joint compatibility test. Robotics and
Automation, IEEE Transactions on, 17(6):890 –897,
dec 2001.

[3] G. Pandey, J. McBride, S. Savarese, and R. Eustice.
Extrinsic calibration of a 3d laser scanner and an
omnidirectional camera. In 7th IFAC Symposium on
Intelligent Autonomous Vehicles, volume 7, Leece,
Italy, 2010.

[4] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2005.

[5] R. Unnikrishnan and M. Hebert. Fast extrinsic
calibration of a laser rangefinder to a camera. Technical
report.

9


	Introduction
	Hulls and Deck
	Hull Design
	Hull Fabrication
	Deck Design

	Electrical System
	Design
	Box Layout
	Cooling System
	Sensors and Servos

	Vision System
	Detection from Camera Images
	Point Cloud Generation
	Calibration
	Spacial and Visual Data Association

	Feature Detection
	Buoy Detection
	Poker Chip Station Detection
	Jackpot Station Detection
	Cheater's Hand Station Detection
	Hot Suite Station Detection

	SLAM
	Route Planning
	Speed Gate and Buoy Channel Planning
	Challenge Task Planning
	Shore Following
	The Poker Chip
	The Jackpot
	The Cheater's Hand

	Obstacle Avoidance

	Utilities
	LCM: Lightweight Communications and Marshalling
	Bot-Procman: Process Management
	Vis: Visualization Library
	PID Tunning

	Conclusion
	References

